Multivariable Calculus
Undergraduate
UNE-PMTH212 2025- Study method
- 100% online
- Assessments
- Subject may require attendance
- Enrol by
- 16 Feb 2025
- Entry requirements
- Part of a degree
- Duration
- 16 weeks
- Start dates
- 24 Feb 2025
- Price from
- $2,351
- Upfront cost
- $0
- Loan available
- FEE-HELP available
Multivariable Calculus
About this subject
Upon completion of this unit, students will be able to:
- demonstrate a broad theoretical and technical knowledge of vector functions and curves in space, including the concepts of length and curvature;
- demonstrate a broad theoretical and technical knowledge of differentiation of multivariable functions, including the inverse mapping theorem and multivariable Taylor formula;
- demonstrate a broad theoretical and technical knowledge of multivariable integration and the ability to compute surface and volume integrals; and
- demonstrate a broad theoretical and technical knowledge of the integral theorems and demonstrate the ability to apply this knowledge to fluid dynamics.
- Topics will be available to enrolled students in the subjects Learning Management System site approximately one week prior to the commencement of the teaching period.
Multivariable calculus has diverse applications across many fields, from modelling and studying dynamic systems in engineering and social science, to analysing and forecasting stock market activity. This subject builds on your understanding of the basic concepts of single variable calculus, generalising these concepts to functions of two or more variables. Focusing on both theoretical and technical aspects, you will explore basic geometrical topics on curves and surfaces in relation to multivariable functions. You will also examine limits and continuity, differentiability and partial derivatives, inverse and implicit mapping theorems, multivariable Taylor formula, extreme values, double and triple integrals, line integrals and the integral theorems. Applying your knowledge to fluid dynamics and using the principles of multivariable calculus, the unit will help you to fine tune your ability to solve complex real-world mathematical problems.
Assessment 1 to Assessment 10: Notes Problem-based assignments. Relates to Learning Outcomes 1, 2, 3, 4;
Final Examination: 3 hrs 15 mins. It is mandatory to pass this examination in order to pass this unit. Relates to Learning Outcomes 1, 2, 3, 4.
UNE manages supervised exams associated with your UNE subjects.
Prior to census date, UNE releases exam timetables. They’ll email important exam information directly to your UNE email address.- Assessment 1 (4%)
- Assessment 2 (4%)
- Assessment 3 (4%)
- Assessment 4 (4%)
- Assessment 5 (4%)
- Assessment 6 (4%)
- Assessment 7 (4%)
- Assessment 8 (4%)
- Assessment 9 (4%)
- Assessment 10 (4%)
- Final Invigilated Examination (60%)
For textbook details check your university's handbook, website or learning management system (LMS).
The University of New England is the only Australian public university to be awarded the maximum 5 stars for Overall Experience by the Good Universities Guide, 13 years in a row. UNE has delivered distance education since 1955—that’s longer than any other Australian university. Perhaps that’s why students continue to rate UNE so highly for student satisfaction and teaching quality. With over 170 degrees offered online, and more than 22,000 students, UNE is an expert in online education.
Learn more about UNE.
Explore UNE courses.
- QS Ranking 2025:
- 36
Entry requirements
Part of a degree
To enrol in this subject you must be accepted into one of the following degrees:
Elective
- UNE-DSC-DIP-2025 - Diploma in Science
Prior study
You must either have successfully completed the following subject(s) before starting this subject, or currently be enrolled in the following subject(s) in a prior study period; or enrol in the following subject(s) to study prior to this subject:
Please note that your enrolment in this subject is conditional on successful completion of these prerequisite subject(s). If you study the prerequisite subject(s) in the study period immediately prior to studying this subject, your result for the prerequisite subject(s) will not be finalised prior to the close of enrolment. In this situation, should you not complete your prerequisite subject(s) successfully you should not continue with your enrolment in this subject. If you are currently enrolled in the prerequisite subject(s) and believe you may not complete these all successfully, it is your responsibility to reschedule your study of this subject to give you time to re-attempt the prerequisite subject(s).
Others
To enrol in this subject you will need to pass UNE-MTHS120 and UNE-MTHS130 subjects. Please note as UNE results are released after the close of enrolment date, your enrolment into this subject will be withdrawn if you do not receive a satisfactory result for UNE-MTHS120 and UNE-MTHS130.
Additional requirements
- Equipment requirements - Headphones or speakers (required to listen to lectures and other media). Headset, including microphone (highly recommended). Webcam (may be required for participation in virtual classrooms and/or media presentations).
- Software requirements - It is essential for students to have reliable internet access in order to participate in and complete your units, regardless of whether they contain an on campus attendance or intensive school component. Please refer students to link for requirements: http://www.une.edu.au/current-students/support/it-services/hardware
- Other requirements -
Textbook information is not available until approximately 8 weeks prior to the commencement of the Teaching period.
Students are expected to purchase prescribed material.
Textbook requirements may vary from one teaching period to the next.
Study load
- 0.125 EFTSL
- This is in the range of 10 to 12 hours of study each week.
Equivalent full time study load (EFTSL) is one way to calculate your study load. One (1.0) EFTSL is equivalent to a full-time study load for one year.
Find out more information on Commonwealth Loans to understand what this means to your eligibility for financial support.
Related degrees
Once you’ve completed this subject it can be credited towards one of the following courses
Undergraduate
UNE-DSC-DIP